Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity
نویسندگان
چکیده
Dilatation of aluminum (Al) core for micron-scale particles covered by alumina (Al2O3) shell was measured utilizing x-ray diffraction with synchrotron radiation for untreated particles and particles after annealing at 573 K and fast quenching at 0.46 K/s. Such a treatment led to the increase in flame rate for Al + CuO composite by 32% and is consistent with theoretical predictions based on the melt-dispersion mechanism of reaction for Al particles. Experimental results confirmed theoretical estimates and proved that the improvement of Al reactivity is due to internal stresses. This opens new ways of controlling particle reactivity through creating and monitoring internal stresses. Disciplines Aerospace Engineering | Structures and Materials Comments This article is published as Levitas, Valery I., Jena McCollum, Michelle L. Pantoya, and Nobumichi Tamura. "Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity." Journal of Applied Physics 118, no. 9 (2015): 094305. doi: 10.1063/1.4929642. Posted with permission. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/aere_pubs/94 Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity Valery I. Levitas, Jena McCollum, Michelle L. Pantoya, and Nobumichi Tamura Citation: Journal of Applied Physics 118, 094305 (2015); View online: https://doi.org/10.1063/1.4929642 View Table of
منابع مشابه
Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity
The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30-50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles ...
متن کاملMechanochemical mechanism for reaction of aluminium nano- and micrometre-scale particles.
A recently suggested melt-dispersion mechanism (MDM) for fast reaction of aluminium (Al) nano- and a few micrometre-scale particles during fast heating is reviewed. Volume expansion of 6% during Al melting produces pressure of several GPa in a core and tensile hoop stresses of 10 GPa in an oxide shell. Such stresses cause dynamic fracture and spallation of the shell. After spallation, an unload...
متن کاملNi@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...
متن کاملEstimation of the Stress Intensity Factors for Surface Cracks in Spherical Electrode Particles Subject to Phase Separation
Experiments have frequently shown that phase separation in lithium-ion battery electrodes could lead to the formation of mechanical defects, hence causing capacity fading. The purpose of the present work has been to examine stress intensity factors for pre-existing surface cracks in spherical electrode particles during electrochemical deintercalation cycling using both analytical and numerical ...
متن کاملFast Reacting Nano-Composite Energetic Materials: Synthesis and Combustion Characterization
Fast Reacting Nano-Composite Energetic Materials: Synthesis and Combustion Characterization Report Title Energetic composites are mixtures of solid fuel and oxidizer particles that when combined offer higher calorific output than monomolecular explosives. The composites traditionally deliver energy as diffusion limited reactions and thus their power available from reaction is much smaller than ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015